Co-ordination chemistry of the mixed phosphorus(III)-phosphorus(v) phosphazene ligand $\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}_{2}$ crystal structures of cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{3}\right) \mathrm{X}\left\{\mathrm{Ph}_{2} \mathrm{PNP(Ph)}{ }_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh} \mathbf{2}_{2}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right]\left(\mathrm{X}=\mathrm{CH}_{3}\right.$ or I$) \dagger$

Alexandra M. Z. Slawin, M artin B. Smith and J. D erek W oollins*
D epartment of Chemistry, L oughborough U niversity, L oughborough, Leics., UK LE 11 3TU

The ligand $\mathrm{Ph} h_{2} \mathrm{PN} P(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{~N} P P h_{2} \mathrm{I}$ was smoothly oxidised at both terminal PPh_{2} moieties with either elemental sulfur or grey selenium to give $\mathrm{Ph}_{2} P(E) N P(P h)_{2} P(P h)_{2} N P(E) P h_{2}(E=S$ II or Se III) in good yields. Oxidation of I with either aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(30 \% \mathrm{w} / \mathrm{w})$ or $\mathrm{Bu} \mathrm{O}^{\mathrm{t}} \mathrm{OH}$ (in decane) gave the known dioxide compound $\left[\mathrm{Ph} 2_{2} \mathrm{P}(\mathrm{O})\right]_{2} \mathrm{NH}$ presumably via a sequence of oxidation, protonation and $\mathrm{P}-\mathrm{P}$ bond-cleavage reactions. Complexation of I to several palladium(II), platinum(II) and gold(I) starting materials, at ambient temperature, afforded new metal complexes in which I adopts either P, P^{\prime}-chelating or P, P^{\prime}-bridging co-ordination modes. Reaction of I (1 equivalent) with the zerovalent compounds [$\left.M\left(\mathrm{PPh}_{3}\right)_{4}\right]$ ($\mathrm{M}=\mathrm{Pt}$ or Pd) in toluene proceeded cleanly, with $\mathrm{P}-\mathrm{P}$ bond cleavage, and formation of the known four-membered metallacycles [$\mathrm{M}_{\left(\mathrm{Ph}_{2} \mathrm{PN} P \mathrm{Ph}_{2} \text { - }\right.}$ $\left.\left.P, \mathrm{P}^{\prime}\right)_{2}\right]$. All compounds were characterised by a combination of IR and N M R ($\left.{ }^{1} \mathrm{H},{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\},{ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\}\right)$ spectroscopy and elemental analyses. F urthermore, themolecular structures of cis-[Pt(CH3)X $\left\{\mathrm{Ph}_{2} \mathrm{PN} P(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2}\right.$ $\left.\left.N P_{2}-P, P^{\prime}\right\}\right]\left(X=\mathrm{CH}_{3}\right.$ or I) have been determined by single-crystal X-ray diffraction and represent the first examples of $\mathrm{M}_{4} \mathrm{~N}_{2}$ metallacycles incorporating a late transition metal. The $\mathrm{PtP}_{4} \mathrm{~N}_{2}$ rings in both compounds adopt 'tub-like' geometries.

Bis(diphenylphosphino)amine, $\mathrm{Ph}_{2} \mathrm{PN} H \mathrm{PPh}_{2}$ (hereafter abbre viated dppa), is an excellent ligand for complexation to a range of metals, reminiscent in many respects to the more familiar diphosphine ligand $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}(\mathrm{dppm}) .^{1-13} \mathrm{M}$ oreover dppa is also a valuable phosphorus precursor to some attractive $\mathrm{P}-\mathrm{N}$ containing compounds A-C. These may either be non-ligated or stabilised by co-ordination to a metal centre ${ }^{8-10,12-17}$ R ecently there has been interest in the unusual $\mathrm{P}-\mathrm{P}$ coupled diphosphazene $\mathrm{Ph}_{2} \mathrm{PN} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}_{2} \mathrm{I}$, loosely related to the carbon backbone ligand $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}(\mathrm{dppb}) .{ }^{18-20}$ Indeed several synthetic routes (based on oxidative coupling reactions) to I utilising the lithiated anion $\left[\mathrm{Ph}_{2} \mathrm{PN} \mathrm{PPh}_{2}\right]^{-} \mathbf{A}$ have been developed, yet surprisingly the co-ordination chemistry of I has so far remained poorly understood. ${ }^{21}$ In contrast, dppa and A-C can be complexed to a range of transition metals and, furthermore, several different ligating modes have been observed. ${ }^{1-17,21-24}$

The present work describes the preparation and characterisation of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}$ ($\mathrm{E}=\mathrm{S}$ or Se) in which the $\mathrm{P}-\mathrm{P}$ bond remains intact and also new complexes of I in which both P, P^{\prime}-chelating and P, P^{\prime}-bridging bonding modes areobserved. X-R ay crystallography has been used to determine unambiguously the structures of the platinum(II) complexes cis$\left[\mathrm{Pt}\left(\mathrm{CH}_{3}\right) \mathrm{X}\left\{\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}_{2}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right]\left(\mathrm{X}=\mathrm{CH}_{3}\right.$ or I$)$ which represent the first examples of seven-membered $M P_{4} N_{2}$ ($\mathrm{M}=$ late transition-metal ion) ring compounds. Part of this work has previously been communicated. ${ }^{21}$

E x perimental

General

U nless otherwise stated, manipulations were performed under an oxygen-free nitrogen atmosphere using predried solvents and standard Schlenk techniques. The ligand $\mathrm{Ph}_{2} \mathrm{PN} P(\mathrm{Ph})_{2}-$ $\mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}_{2} \mathrm{I}$ was prepared according to the procedure provided inspiration and friendship through many years. He is sadly missed.

described by Braunstein et al. ${ }^{19}$ The metal complexes [M(X)$Y(\operatorname{cod})] \quad\left(M=P t\right.$ or $\mathrm{Pd} ; \mathrm{X}, \mathrm{Y}=\mathrm{Cl}, \mathrm{Br}$, I or $\mathrm{CH}_{3} ; \operatorname{cod}=$ cycloocta-1,5-diene), ${ }^{25-28}\left[\mathrm{PtCl}_{2}\left(\mathrm{SEt}_{2}\right)_{2}\right]^{29} \quad\left[\{\mathrm{Pd}(\mu-\mathrm{Cl})(\mathrm{L}-\mathrm{L})\}_{2}\right]$ [$\mathrm{HL}-\mathrm{L}=\mathrm{N}, \mathrm{N}$-dimethylbenzylamine $\left(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}\right)$ or N, N -dimethyl-1-naphthylamine $\left.\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}\right)\right],{ }^{30} \quad[\mathrm{AuCl}($ tht $)]$ (tht = tetrahydrothiophene) $)^{31}$ and $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{4}\right]^{32}(\mathrm{M}=\mathrm{Pt}$ or Pd$)$ were prepared according to literature methods. A queous $\mathrm{H}_{2} \mathrm{O}_{2}$ (30% w/w, Fluka), anhydrous ButoOH in decane (Aldrich Chemical Co .) and Mel (F isons) were used without further purification. Potassium tetrachloroplatinate(II), sodium tetrachloropalladate(II) and tetrachloroauric(III) acid were provided on Ioan by Johnson M atthey plc.

Infrared spectra were recorded as K Br pellets in the range $4000-220 \mathrm{~cm}^{-1}$ on a Perkin-Elmer System 2000 Fouriertransform spectrometer, ${ }^{1} \mathrm{H}$ NMR spectra (250 MHz) on a Bruker AC 250 Fourier-transform spectrometer with chemical shifts (δ) in ppm (± 0.01) to high frequency of $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$ and coupling constants (J) in Hz ($\pm 0.1 \mathrm{~Hz}$), ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N} M \mathrm{R}$ spectra (36.2 or 101.3 M Hz) either on a JEOL FX 90 Q or Bruker AC250 Fourier-transform spectrometer with chemical shifts (δ) in ppm (± 0.1) to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ and coupling constants (J) in $\mathrm{Hz}(\pm 3)$ and ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra (53.7 M Hz) on a Bruker AC250 Fourier-transform spectrometer with chemical shifts (δ) referenced to external $\mathrm{H}_{2} \mathrm{PtCl}_{6}$ (in $\mathrm{D}_{2} \mathrm{O}$ $\mathrm{HCl})$. All NMR spectra were measured in CDCl_{3} unless otherwise stated. Elemental analyses (Perkin-Elmer 2400 CH N
elemental analyser) were performed by the L oughborough U niversity Service within the D epartment of Chemistry.

Preparation of the compounds

$\mathbf{P h} \mathbf{P} \mathbf{(S)} \mathbf{N} \mathbf{P}(\mathbf{P h})_{2} \mathbf{P}(\mathbf{P h})_{2} \mathbf{N P (S) P h _ { 2 }}$ II. To a solution of $\mathrm{Ph}_{2}-$ $\mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}(0.352 \mathrm{~g}, 0.458 \mathrm{mmol})$ in thf $\left(30 \mathrm{~cm}^{3}\right)$ was added elemental sulfur ($0.029 \mathrm{~g}, 0.905 \mathrm{mmol}$) as a solid in one portion. After stirring for ca. 5 min a white solid II deposited and the resulting mixture was stirred for 2.5 h . The solid was collected by suction filtration. Y ield: $0.303 \mathrm{~g}, 80 \%$. Selected spectroscopic data: $\delta\left({ }^{1} \mathrm{H}\right) 7.83-7.49$ and 7.35-7.18 (aromatic H);IR (K Br) 1207, $1174\left(v_{\text {PN }}\right), 603 \mathrm{~cm}^{-1}\left(v_{\text {PS }}\right)$.
 $\mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}(0.440 \mathrm{~g}, 0.572 \mathrm{mmol})$ and grey Se ($0.096 \mathrm{~g}, 1.216 \mathrm{mmol}$) was added tetrahydrofuran (thf) (45 cm^{3}). The mixture was heated under reflux for 2 h , cooled and evaporated to dryness under reduced pressure. Extraction into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. $50 \mathrm{~cm}^{3}$), filtration through a small Celite pad and evaporation to dryness gave a pale yellow solid. Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ gave the product III as a white solid. Y ield: $0.402 \mathrm{~g}, 76 \%$. Selected spectroscopic data: $\delta\left({ }^{1} \mathrm{H}\right) 7.83-$ 7.51 and 7.35-7.18 (aromatic H); IR (K Br) 1206, 1174, 1160 $\left(v_{\text {PN }}\right), 550 \mathrm{~cm}^{-1}\left(v_{\text {PSe }}\right)$.

Reaction of $\left.\mathrm{Ph}_{2} \mathrm{PNP(Ph}\right)_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}$ with aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ ($\mathbf{3 0} \% \mathrm{w} / \mathrm{w}$). U nder aerobic conditions, a thf ($1 \mathrm{~cm}^{3}$) solution of $\mathrm{Ph}_{2} \mathrm{PN} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}(0.050 \mathrm{~g}, 0.065 \mathrm{mmol})$ was treated with aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(30 \% \mathrm{w} / \mathrm{w}, 1$ drop, ca. 0.038 g$)$. The solution was stirred for ca. 21 h during which time $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})\right]_{2} \mathrm{NH}$ was deposited, collected by suction filtration and dried in vacuo. Y ield: $0.042 \mathrm{~g}, 77 \%$. Alternatively the same product was obtained using anhydrous $\mathrm{Bu}^{\text {t }} \mathrm{OOH}$ in decane An authentic sample of $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})\right]_{2} \mathrm{NH}$ was prepared by oxidation of dppa with aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ according to ref. 13 .
cis-[PtCl $\left.\left\{\mathrm{Ph}_{2} \mathbf{P N P (P h}\right)_{2} \mathbf{P}\left(\mathrm{Ph}_{2} \mathbf{N} \mathrm{PPh}_{2}-\mathbf{P}, \mathbf{P}^{\prime}\right\}\right]$ 1. Under aerobic conditions, to a solution of $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right](0.074 \mathrm{~g}, 0.198$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2}-$ $N P P h_{2}(0.156 \mathrm{~g}, 0.203 \mathrm{mmol})$. The solution was stirred for 10 min , filtered and the volume concentrated by evaporation under reduced pressure to ca. 1-2 cm^{3}. A ddition of $\mathrm{Et}_{2} \mathrm{O}\left(25 \mathrm{~cm}^{3}\right)$ gave the product 1 which was collected by suction filtration and dried in vacuo. Yield: $0.185 \mathrm{~g}, 90 \%$. Alternatively 1 was synthesized from $\left[\mathrm{PtCl}_{2}\left(\mathrm{SEt}_{2}\right)_{2}\right]$ in 84% yield. Selected spectroscopic data: $\delta\left({ }^{1} \mathrm{H}\right) 7.62-7.04$ (aromatic H); IR (K Br) 1206, 1181, $1161\left(v_{\text {PN }}\right), 306,279 \mathrm{~cm}^{-1}\left(v_{\text {PtCI }}\right)$.

The following compounds were prepared in a similar manner (yields in parentheses): cis-[$\mathrm{PtBr}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN} P(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}_{2}-\right.$ $\left.\left.\mathrm{P}, \mathrm{P}^{\prime}\right\}\right] 2$ (92%), cis-[$\left.\mathrm{Ptl}{ }_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}_{2}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right] 3$ (93\%), cis-[PdCl $\left.2\left\{\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} N \mathrm{PPh}_{2}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right] \mathbf{4}$ (76\%), cis- $\left[\mathrm{PdBr}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}_{2}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right] 5$ (90\%), cis-[Pt$\left.\left(\mathrm{CH}_{3}\right)_{2}\left[\mathrm{Ph} h_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh} \mathrm{h}_{2}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right] 6$ (91\%) and cis-[Pt$\left.\left(\mathrm{CH}_{3}\right) \mathrm{Cl}\left\{\mathrm{Ph} \mathrm{P}_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}_{2}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right] 7$ (63\%). Selected spectroscopic data: 2, $\delta\left({ }^{1} \mathrm{H}\right) 7.62-7.04$ (aromatic H); IR (K Br) 1197, 1180, $1161 \mathrm{~cm}^{-1}\left(v_{\mathrm{PN}}\right) ; 3, \delta\left({ }^{1} \mathrm{H}\right) 7.61-7.03$ (aromatic H); IR (K Br) 1181, $1161 \mathrm{~cm}^{-1}\left(\mathrm{v}_{\mathrm{PN}}\right) ; 4$, IR (K Br) 1182, 1161 (v_{PN}); $304,276 \mathrm{~cm}^{-1}\left(v_{\text {PdCI }}\right) ; 5$ IR (K Br) 1182, $1162 \mathrm{~cm}^{-1}\left(v_{\text {PN }}\right) ; 6$, $\delta\left({ }^{1} \mathrm{H}\right) 7.43-6.97$ (aromatic H$)$ and $0.09\left[\mathrm{Pt}-\mathrm{CH}_{3}, \mathrm{~J}(\mathrm{PtH}) 65.7\right.$, $\mathrm{J}(\mathrm{PH}) 12.7 \mathrm{~Hz}] ; 7, \delta\left({ }^{1} \mathrm{H}\right) 7.61-7.08$ (aromatic H) and 0.27 (PtCH_{3}); IR (KBr) $279 \mathrm{~cm}^{-1}\left(\mathrm{v}_{\text {PtCI }}\right)$.

Slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (b.p. 60$80^{\circ} \mathrm{C}$) filtrate gave crystals of complex 6 suitable for X -ray crystallography.
cis-[Pt(CH $\left.\left.\mathbf{H}_{3}\right)\left\{\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh} h_{2}-\mathrm{P}, \mathrm{P}{ }^{\prime}\right\}\right]$ 8. A solution of cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{3}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN} P(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}_{2}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right](0.029$ $\mathrm{g}, 0.0292 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. $0.6 \mathrm{~cm}^{3}$) was treated with iodomethane (ca. $0.18 \mathrm{~g}, 43$-fold molar excess). A fter stirring for ca. 30 min , light petroleum (b.p. $\left.60-80^{\circ} \mathrm{C}\right)\left(3 \mathrm{~cm}^{3}\right)$ was
added and the solid product 8 collected by suction filtration. Y ield: $0.028 \mathrm{~g}, 88 \%$. Selected spectroscopic data: $\delta\left({ }^{1} \mathrm{H}\right) 7.58-$ 7.05 (aromatic H) and $0.63\left({\left.\mathrm{Pt}-\mathrm{CH}_{3}\right) \text {. Slow diffusion of light }}^{2}\right.$ petroleum into a CDCl_{3} solution of complex $\mathbf{8}$ over the course of ca. 8 d gave crystals suitable for X -ray crystallography.
[\{PdCl(C $\left.\left.\left.{ }_{9} \mathrm{H}_{12} \mathbf{N}\right)\right\}_{2}\left\{\mu-\mathrm{Ph} \mathbf{h}_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}_{2}\right\}\right]$ 9. To a yellow solution of $\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)\right\}_{2}\right](0.040 \mathrm{~g}, 0.0724$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added solid $\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{Ph})_{2}-$ $\mathrm{P}(\mathrm{Ph})_{2} \mathrm{~N} \mathrm{PPh}_{2}(0.056 \mathrm{~g}, 0.0728 \mathrm{mmol})$. The solution was stirred for 30 min , filtered and the volume concentrated under reduced pressure to $\mathrm{ca} .1-2 \mathrm{~cm}^{3}$. Addition of light petroleum ($15 \mathrm{~cm}^{3}$) gave the solid product 9 which was collected by suction filtration and dried in vacuo. Y ield: $0.080 \mathrm{~g}, 84 \%$. Selected spectroscopic data: $\delta\left({ }^{1} \mathrm{H}\right) 7.97-6.25$ (aromatic H), $3.79\left(\mathrm{~N}-\mathrm{CH}_{2}\right)$ and $2.50\left[4 \mathrm{~J}(\mathrm{PH}) 2.3 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.

In a similar manner the complex $\left[\left\{\mathrm{PdCl}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right)\right\}_{2}\{\mu\right.$ $\left.\left.\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}_{2}\right\}\right] 10$ was prepared in 90% yield. Selected spectroscopic data: $\delta\left({ }^{1} \mathrm{H}\right) 7.84-5.30$ (aromatic H) and $\left.3.09[4](\mathrm{PH}) 2.3 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
$\left.\left.[(A u C))_{2}\left\{\mu-\mathbf{P h} h_{2} \mathbf{P N P (P h}\right)_{2} \mathbf{P}(\mathbf{P h})_{2} \mathbf{N P P h}_{2}\right\}\right]$ 11. To a solution of [AuCl(tht)] ($0.104 \mathrm{~g}, 0.324 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added solid $\mathrm{Ph}_{2} \mathrm{PN} P(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}_{2}(0.126 \mathrm{~g}, 0.164 \mathrm{mmol})$. A fter ca. 5 min solid 11 deposited and the mixture was stirred for ca. 70 min . The product was collected by suction filtration and dried in vacuo. Y ield: $0.153 \mathrm{~g}, 77 \%$. Selected spectroscopic data: $\delta\left({ }^{1} \mathrm{H}\right) 7.66-7.29$ (aromatic H); IR (K Br) 1191, 1176, $1152\left(v_{\text {PN }}\right)$, $324 \mathrm{~cm}^{-1}\left(v_{\text {Aucl }}\right)$.

Reaction of $\mathrm{Ph} h_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}$ with $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}\right]$. To the solids $\mathrm{Ph}_{2} \mathrm{PN} P(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh} \mathrm{P}_{2}(0.129 \mathrm{~g}, 0.168 \mathrm{mmol})$ and $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}\right](0.208 \mathrm{~g}, 0.167 \mathrm{mmol})$ was added toluene $\left(20 \mathrm{~cm}^{3}\right)$. A fter stirring for ca. 24 h the white product $\left[\mathrm{Pt}\left(\mathrm{Ph}_{2} \mathrm{PN}^{2} \mathrm{PPh}_{2}-\right.\right.$ $\left.\left.P, P^{\prime}\right)_{2}\right] \mathbf{1 2}$ was collected by suction filtration and dried in vacuo. Y ield: $0.145 \mathrm{~g}, 90 \%$. Examination of the filtrate residue by ${ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N} M \mathrm{R}$ spectroscopy revealed only $\mathrm{PPh}_{3}[\delta(\mathrm{P})-4.6]$ was present. In a similar manner the reaction of $\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{Ph})_{2}-$ $\mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}(0.070 \mathrm{~g}, 0.091 \mathrm{mmol})$ with $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](0.103 \mathrm{~g}$, $0.089 \mathrm{mmol})$ was studied and found to give $\left[\mathrm{Pd}\left(\mathrm{Ph}_{2} \mathrm{PN} \mathrm{PPh}_{2}-\right.\right.$ $\left.\left.P, P^{\prime}\right)_{2}\right]$ 13. Y ield: $0.061 \mathrm{~g}, 78 \%$.

No reaction between [$\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{4}$] ($\mathrm{M}=\mathrm{Pt}$ or Pd) and $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{~N} P(E) \mathrm{Ph}_{2}(\mathrm{E}=\mathrm{S}$ or Se$)$ in toluene was observed even after prolonged ($>10 \mathrm{~d}$) stirring at ambient temperature.

X -R ay crystallography

The crystal structures of compounds 6 and 8 were obtained using a Rigaku AFC7S diffractometer with graphitemonochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.54178 \AA$) and ω scans at room temperature. Details of the data collections and refinements are given in Table 3. Empirical absorption corrections (DIFABS) ${ }^{33}$ were applied. The structures were solved by the heavy-atom method. ${ }^{34}$ In 8 the CH_{3} and I groups are disordered. The molecule was refined with both C and I atoms in 50% occupancy at each site. The disordered I atom positions were refined anisotropically and the disordered C atom positions isotropically, with no H atoms on the 50% occupancy methyl carbons being included in the refinement. All of the other non-hydrogen atoms were refined anisotropically. The $\mathrm{C}-\mathrm{H}$ atoms were idealised and fixed ($\mathrm{C}-\mathrm{H} 0.95 \AA$). No additional constraints or restraints were applied. Refinement was by full-matrix least-squares methods based on F. Calculations were performed using TEXSA N. ${ }^{35}$

A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. Chem. Soc., D alton Trans., 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/570.

Table 1 M icroanalytical data for the new compounds (calculated values in parentheses)

	$l l l$		
Compound	C nalysis (\%)	H	N
II	$69.2(69.2)$	$4.55(4.85)$	$3.25(3.35)$
III	$62.2(62.2)$	$4.15(4.35)$	$2.95(3.0)$
$\mathbf{1}$	$55.1(55.7)$	$4.0(3.9)$	$2.7(2.7)$
$\mathbf{2}$	$51.2(51.3)$	$3.6(3.6)$	$2.6(2.5)$
$\mathbf{3}$	$47.4(47.35)$	$3.2(3.3)$	$1.5(2.3)$
$\mathbf{4}$	$60.25(60.95)$	$4.4(4.25)$	$3.0(2.95)$
$\mathbf{5}$	$55.05(55.7)$	$3.9(3.9)$	$2.45(2.7)$
$\mathbf{6}$	$60.0(60.4)$	$4.25(4.65)$	$2.6(2.8)$
$\mathbf{7}$	$56.6(58.0)$	$4.15(4.3)$	$2.8(2.75)$
$\mathbf{8}$	$53.25(53.20)$	$4.15(3.95)$	$2.7(2.55)$
$\mathbf{9}$	$61.6(62.05)$	$4.95(4.65)$	$3.9(4.0)$
$\mathbf{1 0}$	$59.55(60.0)$	$4.9(4.9)$	$4.3(4.25)$
$\mathbf{1 1}$	$46.45(46.75)$	$2.9(3.25)$	$2.4(2.25)$

Results and Discussion

O xidation reactions of $\mathrm{Ph}_{2} \mathrm{PN} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{~N} \mathrm{P} \mathrm{Ph} h_{2}$

Previous work by ourselves ${ }^{36,37}$ has shown that dppa can be selectively monooxidised to afford the unsymmetrical ligands $\mathrm{Ph}_{2} \operatorname{PNHP}(E) \mathrm{Ph}_{2}(\mathrm{E}=\mathrm{O}, \mathrm{S}$ or Se$)$. Further oxidation leads to the formation of the doubly oxidised compounds $\left[P h_{2} P(E)\right]_{2} \mathrm{NH}$. ${ }^{13,37-39}$ We have found that compound \mathbf{I} can also be smoothly oxidised, under conditions similar to those employed for dppa, with elemental sulfur or grey selenium in thf to yield $\mathrm{Ph}_{2} P(E) N P(P h)_{2} P(P h)_{2} N P(E) P h_{2}(E=S I I, E=S e$ III), both isolated as white air-stable solids in 80 and 76% yields respectively. M oreover the $\mathrm{P}-\mathrm{P}$ bond in these ligands is not cleaved (X -ray evidence). ${ }^{21}$ This contrasts with the analogous reaction of I in thf, with either aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(30 \% \mathrm{w} / \mathrm{w})$ or anhydrous $\mathrm{Bu}^{\mathrm{t} O O H}$ (in decane) which did not lead to the expected formation of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NP}(\mathrm{O}) \mathrm{Ph}_{2}$ IV but instead gave the known compound $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})\right]_{2} \mathrm{NH}$ in 77% yield. However, careful monitoring (by ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N} M \mathrm{R}$ spectroscopy) of the reaction of I (in thf) with $\mathrm{H}_{2} \mathrm{O}_{2}$ revealed the formation of both $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})\right]_{2} \mathrm{NH}[\delta(\mathrm{P}) 18.8]$ and a second species tentatively assigned to IV [$\delta \mathrm{P}^{\mathrm{II}}, \mathrm{P}^{\vee} 14.1,9.6, \mathrm{~J}(\mathrm{PP})$ not resolved]. After leaving samples to stand for several hours only $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})\right]_{2} \mathrm{NH}$ precipitated from solution. No attempts to pre pare IV using alternative oxidants or varying the experimental conditions have been tried. We, and others, ${ }^{18}$ have observed that solutions of I in various solvents are unstable and decompose. Hence, in thf we have identified a range of phosphoruscontaining compounds including dppa, $\mathrm{Ph}_{2} \mathrm{PNHP}(\mathrm{O}) \mathrm{Ph}_{2}$ and $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})\right]_{2} \mathrm{NH}$ in addition to several other uncharacterised species.

The mixed phosphorus(v) compounds II and III have the expected analytical (Table 1) and spectroscopic properties (Table 2 and Experimental section). H ence in the IR spectra of II and III $v_{(\text {PS })}$ and $v_{(\text {PSe })}$ are found at 603 and $550 \mathrm{~cm}^{-1}$ respectively, cf. $\mathrm{Ph}_{2} \mathrm{PNHP}(\mathrm{S}) \mathrm{Ph}_{2}\left[\mathrm{v}_{(\mathrm{PS})} 634 \mathrm{~cm}^{-1}\right],\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S})\right]_{2} \mathrm{NH}\left[\mathrm{v}_{(\text {PS })}\right.$ $\left.645 \mathrm{~cm}^{-1}\right], \mathrm{Ph}_{2} \mathrm{PN} H \mathrm{P}(\mathrm{Se}) \mathrm{Ph}_{2}\left[v_{\text {(pse) }} 551 \mathrm{~cm}^{-1}\right]$ and $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se})\right]_{2}-$ $\mathrm{NH}\left[\mathrm{v}_{\text {(PSe) }} 546 \mathrm{~cm}^{-1}\right] . .^{37,38}$ In the ${ }^{31 \mathrm{P}}-$ $\left.^{1} \mathrm{H}\right\} N M R$ spectrum of III the ${ }^{1}$ (PSe) coupling constant of 714 Hz is smaller in magnitude than that reported for $\mathrm{Ph}_{2} \mathrm{PNHP(Se)} \mathrm{Ph}_{2}(757 \mathrm{~Hz})$ and $\left[\mathrm{Ph}_{2}-\right.$ $\mathrm{P}(\mathrm{Se})]_{2} \mathrm{NH}(793 \mathrm{~Hz}) .{ }^{37,38}$ The crystal structure of III has pre viously been reported by us and is in accord with the formulation shown. ${ }^{21}$

C helate complexes of $\mathrm{Ph} \mathbf{h}_{2} \mathbf{P N} \mathbf{P}(\mathbf{P h})_{2} \mathbf{P}(\mathbf{P h})_{2} \mathbf{N P P h}$

Treatment of [M (X)Y (cod)] (M = Pt or Pd; X, Y = CI, Br, I or CH_{3}; cod = cycloocta-1,5-diene) with compound I (1:1 molar ratio) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature gave the complexes cis$\left[\mathrm{M}(\mathrm{X}) \mathrm{Y}\left\{\mathrm{Ph}_{2} \mathrm{PN} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}_{2}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right]$ 1-7 in reasonable to good yields (63-93\%). A Iternatively complex $\mathbf{1}$ can be readily

Table 2 Selected spectroscopic data for compounds II, III and 1-13

Compound	δ			A dditional data
	PIIIa	PV	Pt	
II	47.2	13.5		J (PP) 7.2
III	38.4	14.5		J (PSe) 714
				J (PP) 7.2
1	22.9 (4049)	1.1	-4157	
2	23.0 (4001)	0.3	-4408	
3	22.7 (3845)	-0.9	-4902	
4	$48.8{ }^{\text {b }}$	-1.4		
5	$47.8{ }^{\text {b }}$	-2.1		
6	51.7 (2111)	$-0.1{ }^{\text {c }}$	-4354	J (PP) 13.3
7	54.4 (2006) ${ }^{\text {d }}$	$4.1,0.8^{\text {e }}$	-4281	
	29.1 (4694) ${ }^{\text {f }}$			
8	48.5 (2072) ${ }^{\text {d }}$	2.3, $-1.7^{\text {e }}$	-4602	
	31.3 (4556) ${ }^{\text {f,g }}$			
9	60.6	15.8		
10	62.4	15.3		
11	50.8	16.6		J (PP) 8.3
12	-15.9 (1667) ${ }^{\text {h }}$			
	-17.4 (1660) ${ }^{\text {i }}$			
13	$-6.5^{\text {j }}$			

${ }^{\text {a }}$ Values in parentheses denote ${ }^{11}(\mathrm{PtP}) / \mathrm{Hz}$. ${ }^{\mathrm{b}}$ D ecomposes in solution. ${ }^{\text {c }}{ }^{3}$ (PtP)/ Hz not observed. ${ }^{\mathrm{d} P}$ trans to CH_{3}. e Several J (PP) values between 5 and 35 Hz . ${ }^{\mathrm{f}} \mathrm{P}$ trans to $\mathrm{X}(\mathrm{Cl}$ or I$)$. ${ }^{9} \mathrm{M}$ easured in situ. ${ }^{h} M$ easured in situ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(\omega_{2}^{\perp} 35 \mathrm{~Hz}\right)$. 'Taken from ref. 8. ${ }^{1} \mathrm{M}$ easured in situ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

$1 \mathrm{M}=\mathrm{Pt}, \mathrm{X}=\mathrm{Y}=\mathrm{Cl}$
$2 \mathrm{M}=\mathrm{Pt}, \mathrm{X}=\mathrm{Y}=\mathrm{Br}$
$3 \mathrm{M}=\mathrm{Pt}, \mathrm{X}=\mathrm{Y}=\mathrm{I}$
$4 \mathrm{M}=\mathrm{Pd}, \mathrm{X}=\mathrm{Y}=\mathrm{Cl}$
$5 \mathrm{M}=\mathrm{Pd}, \mathrm{X}=\mathrm{Y}=\mathrm{Br}$
$6 \mathrm{M}=\mathrm{Pt}, \mathrm{X}=\mathrm{Y}=\mathrm{CH}_{3}$
$7 \mathrm{M}=\mathrm{Pt}, \mathrm{X}=\mathrm{CH}_{3}, \mathrm{Y}=\mathrm{Cl}$
$8 \mathrm{M}=\mathrm{Pt}, \mathrm{X}=\mathrm{CH}_{3}, \mathrm{Y}=\mathrm{I}$
prepared from $\left[\mathrm{PtCl}_{2}\left(\mathrm{SEt}_{2}\right)_{2}\right]$. The cis geometries of $\mathbf{1 - 7}$ were established in solution by multinuclear NMR spectroscopy (Table 2). The chemical shifts ($\delta \mathrm{P}^{\text {III) }}$) for 1-3 are typically observed at ca. 23.0 ppm (cf. I $\delta \mathrm{P}^{\text {III }} 43$), whilst on going from $\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$ in the platinum(II) series 1-3 there is a small reduction in the magnitude of the ${ }^{11}$ (PtX) coupling constant [J (PtP) 4049 for 1, 4001 for 2, 3845 Hz for 3]. For all the dihalogeno complexes J (PP) was not resolved (at 36.2 M Hz) whereas for the dimethylplatinum(II) complex $6 \mathrm{~J}(\mathrm{PP})$ is ca. 13 Hz . In the ${ }^{195}$ pt- $\left\{{ }^{1} \mathrm{H}\right\}$ N M R spectra of $\mathbf{1 - 3}$ and 6 the expected 1:2:1 triplet was observed whilst the resonances for $\mathbf{7}$ and $\mathbf{8}$ were doublet of doublets (Table 2). When the complexes $\mathbf{1}$ and $\mathbf{2}$ are left to stand in CDCl_{3} for prolonged periods (ca. 5 d) only trace amounts of a decomposition product (δ P 21.0) are observed and tentatively assigned as $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})\right]_{2} \mathrm{~N} \mathrm{H}$. In contrast ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of freshly prepared CDCl_{3} solutions of cis$\left[\mathrm{PdX}{ }_{2}\left\{\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{~N} \mathrm{PPh}_{2}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right](\mathrm{X}=\mathrm{Cl} 4$ or Br 5$)$ indicate only single phosphorus-containing species. However after ca. 2 h conversion into new species ($\delta \mathrm{P}^{\mathrm{III}}, \mathrm{P}^{\mathrm{V}} 52.9,20.3$ in the case of 4; 51.7, 19.2 in the case of 5) is then observed whereas after several hours insoluble products are formed and identified by IR (K Br pellets) as cis-[$\mathrm{PdX}_{2}\left(\mathrm{Ph}_{2} \mathrm{PN}\right.$ H $\left.\left.\mathrm{PPh}_{2}-\mathrm{P}, \mathrm{P}^{\prime}\right)\right]$ ($\mathrm{X}=\mathrm{Cl}$ or Br). \ddagger Clearly the $\mathrm{P}-\mathrm{P}$ bond is susceptible to cleavage under these conditions.
M onitoring the reaction of complex 6 in toluene with an

[^0]Table 3 D etails of the X-ray data collections and refinements for compounds 6 and 8

6
$\mathrm{C}_{50} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{Pt}$
993.91

Clear, plate
$0.20 \times 0.03 \times 0.29$
Orthorhombic
Pccn
12.255(6)
34.724(9)
20.847(8)

8871
8
1.49
7.64
120.0

3984
7366
$2968-2748$
5.8:1 5.3:1
$0.73,1.00 \quad 0.59,1.00$
$0.004 \quad 0.002$
$515 \quad 523$
0.037, 0.032 0.045, 0.041
0.64
$0.62,-0.74$

8
$\mathrm{C}_{49} \mathrm{H}_{43} \mathrm{IN}_{2} \mathrm{P}_{4} \mathrm{Pt}$
1105.78

Yellow, prism
$0.12 \times 0.21 \times 0.21$
Orthorhombic
Pbca
20.807(8)
34.700(4)
12.453(5)

8990
8
1.63
12.63
119.9

4336
0.64
$0.66,-0.95$
$R=\Sigma\left|F_{0}\right|-\left|F_{c}\right| \Sigma\left|F_{0}\right|, R^{\prime}=\left[\Sigma w\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2} / \Sigma w F_{0}{ }^{2}\right]^{\frac{1}{2}} ;$ weighting scheme defined in ref. 35.

Table 4 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for complexes 6 and 8

	$\mathbf{6}$	$\mathbf{8}$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.648(8)$	$1.628(10)$
$\mathrm{N}(1)-\mathrm{P}(2)$	$1.575(8)$	$1.589(9)$
$\mathrm{P}(2)-\mathrm{P}(3)$	$2.290(4)$	$2.242(5)$
$\mathrm{P}(3)-\mathrm{N}(2)$	$1.561(8)$	$1.552(10)$
$\mathrm{N}(2)-\mathrm{P}(4)$	$1.647(8)$	$1.652(10)$
$\mathrm{Pt}-\mathrm{P}(1)$	$2.283(3)$	$2.284(4)$
$\mathrm{Pt}-\mathrm{P}(4)$	$2.285(3)$	$2.279(4)$
$\mathrm{Pt}-\mathrm{C}(49)$	$2.21(1)$	
$\mathrm{Pt}-\mathrm{C}(50)$	$2.209(9)$	
$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{N}(1)$	$120.3(3)$	$118.9(4)$
$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$	$126.9(5)$	$130.4(6)$
$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{P}(3)$	$105.6(4)$	$104.0(4)$
$\mathrm{P}(2)-\mathrm{P}(3)-\mathrm{N}(2)$	$110.1(4)$	$108.5(4)$
$\mathrm{P}(3)-\mathrm{N}(2)-\mathrm{P}(4)$	$138.5(6)$	$139.6(7)$
$\mathrm{N}(2)-\mathrm{P}(4)-\mathrm{Pt}$	$121.2(3)$	$120.4(4)$
$\mathrm{P}(4)-\mathrm{Pt}-\mathrm{P}(1)$	$94.0(1)$	$94.0(1)$
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}(49)$	$93.6(3)$	
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}(50)$	$173.3(2)$	
$\mathrm{P}(4)-\mathrm{Pt}-\mathrm{C}(49)$	$172.4(3)$	
$\mathrm{P}(4)-\mathrm{Pt}-\mathrm{C}(50)$	$92.2(2)$	
$\mathrm{C}(49)-\mathrm{Pt}-\mathrm{C}(50)$	$80.2(3)$	

excess of CH_{3} l by ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectroscopy indicated the exclusive formation of cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{3}\right)!\left\{\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2}-\right.\right.$ $\left.\left.N P^{2} \mathrm{Z}_{2}-\mathrm{P}^{\prime}\right\}\right] 8$ (Tables 1 and 2 for characterising data). We did not observe the formation of any intermediate platinum(iv), species e.g. [PtM $\left.e_{3}\left\{\mathrm{Ph}_{2} \mathrm{PN} P(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} N \mathrm{PPh}_{2}-\mathrm{P}, \mathrm{P}^{\prime}\right\}\right]$.

The crystal structure of compound 6 (Table 4, Fig. 1) reveals square-planar co-ordination of the platinum(II) centre with the $\operatorname{PtP}_{4} \mathrm{~N}_{2}$ ring adopting a 'tub-like' geometry. This can be envisaged as being made up of a $\mathrm{Pt}-\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$ plane of atoms [maximum deviation from mean plane $0.08 \AA$ for $N(1)$] which is folded with respect to the $\mathrm{Pt}-\mathrm{P}(2)-\mathrm{P}(3)-\mathrm{P}(4)$ mean plane (fold angle 109°). The $N(2)$ atom lies out ($0.37 \AA$) of the Pt- $P(2)-$ $P(3)-P(4)$ plane and is on the same side of the molecule as the $\mathrm{Pt}-\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$ plane. The bond lengths and angles in 6 are broadly as anticipated. The $\mathrm{P}(2)-\mathrm{P}(3)$ distance is 2.290 (4) \AA whilst the $\mathrm{P}-\mathrm{N}$ bond lengths divide into two groups: $\mathrm{P}(1)-\mathrm{N}(1)$ and $\mathrm{P}(4)-\mathrm{N}(2)$ are $1.648(8)$ and $1.647(8) \AA$ respectively whilst $\mathrm{P}(2)-\mathrm{N}(1)$ and $\mathrm{P}(3)-\mathrm{N}(2)$ are $1.575(8)$ and 1.561 (8) \AA respectively reflecting some degree of bond alternation as one would

Fig. 1 Crystal structure of cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{3}\right)_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN} P(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}_{2}-\right.\right.$ $\left.\left.P, P^{\prime}\right\}\right]$ 6. Phenyl groups and CH protons omitted for clarity. The structure of complex 8 is very similar and is not illustrated. The numbering scheme is the same for the $\mathrm{PtP}_{4} \mathrm{~N}_{2}$ rings in 6 and 8
expect from simple bonding descriptions. Interestingly the $P-P$ distance in 6 is elongated with respect to the same bond in free I $[2.232(2) \AA],{ }^{19}$ III $[2.218(4) \AA]^{21}$ and the gold(I) compound $\left[(\mathrm{AuCl})_{2}\left\{\mu-\mathrm{Ph} h_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}{ }_{2}\right\}\right][2.215(7) \AA]^{21}$ whilst the $\mathrm{P}-\mathrm{N}$ bond lengths are not so dramatically influenced. The lengthening of the $\mathrm{P}-\mathrm{P}$ bond does not appear to be a consequence of ring formation since in the cyclic arsenic salt $\left.\left[\mathrm{AsPPh}{ }_{2} \mathrm{NP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}\right)_{2}\right] \cdot 4 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ the $\mathrm{P}-\mathrm{P}$ distance is $2.241(3) \AA \AA^{18}$ The crystal structure of 8 (Table 4 for selected bond lengths and angles) is very similar to that of 6 .

Bridging complexes of $\mathrm{Ph} \mathbf{h}_{2} \mathrm{PN}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{~N} \mathbf{P ~ P h}{ }_{2}$

The bridge-cleavage reaction of $\left[\{\mathrm{Pd}(\mu-\mathrm{Cl})(\mathrm{L}-\mathrm{L})\}_{2}\right][\mathrm{HL}-\mathrm{L}=$ N , N -dimethylbenzylamine $\left(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}\right)$ or N, N-dimethyl-1naphthylamine $\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}\right)$] with 1 equivalent of compound I in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yields the dimeric complexes $\left[\{\mathrm{Pd}(\mathrm{L}-\mathrm{L}) \mathrm{Cl}\}_{2}-\right.$ $\left.\left\{\mu-\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{~N} \mathrm{PPh}_{2}\right\}\right]\left(\mathrm{L}-\mathrm{L}=\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N} 9\right.$ or $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}$ 10). Related cyclopalladated dimers with bridging $\mathrm{Ph}_{2} \mathrm{X}$ $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{XPh}_{2}(\mathrm{X}=\mathrm{P}$ or As$)$ ligands are known. ${ }^{40} \mathrm{In}$ the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 9 and 10 the phosphorus(v) resonance is found at higher frequency (typically by ca. 15 ppm) than that observed for the chelate complexes 1-8 (typically ca. 0 ppm, Table 2). We have also prepared the dimeric gold(I) compound $\left[(\mathrm{AuCl})_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{Ph})_{2} \mathrm{P}(\mathrm{Ph})_{2} \mathrm{NPPh}_{2}\right\}\right] 11$ as a white solid in 77% yield.

0 xidative-addition reactions with ligands I-III

A preliminary study on the reactivity of I-III with the zerovalent compounds $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{4}\right](\mathrm{M}=\mathrm{Pt}$ or Pd$)$ was undertaken in order to probe the susceptibility of the $P-P$ bond to cleavage. We find that reaction of I with [$\left.\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (1:1 ratio) in toluene yields the homoleptic metal(II) complexes $\left[\mathrm{M}\left(\mathrm{Ph}_{2} \mathrm{PNPPh}_{2}{ }^{-}\right.\right.$ $\left.\left.P, P^{\prime}\right)_{2}\right](M=P t 12$ or $P d 13) .{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} N M R$ spectroscopy revealed the predominant species upon evaporation of the toluene filtrate to be PPh_{3}. The ${ }^{31} \mathrm{P}$ spectral data (Table 2) for 12 are in good agreement with those previously reported by Browning and Farrar. ${ }^{8} \mathrm{M}$ onitoring these reactions by ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectroscopy showed that oxidative addition was both clean and facile with only [$\mathrm{M}\left(\mathrm{Ph}_{2} \mathrm{PN} \mathrm{PPh}_{2}-\mathrm{P}, \mathrm{P}^{\prime}\right)_{2}$] and displaced PPh_{3} identified as the sole products. We did not detect the formation of any intermediates (e.g. the d^{10} species \mathbf{D}) in these reactions. M ixed metal (0) complexes of the type $\left[M\left(\mathrm{PR}_{3}\right)_{2}(\mathrm{P}-\mathrm{P})\right]$ ($\mathrm{P}-\mathrm{P}=$ chelating diphosphine) have previously been documented. ${ }^{41}$

N eutral compounds of the type $\left[\mathrm{M}\left\{\mathrm{Ph}_{2} \mathrm{PN} P(E) \mathrm{Ph}_{2}-\mathrm{P}, \mathrm{E}\right\}_{2}\right] \mathbf{E}$ (cis) and \mathbf{F} (trans) are known ${ }^{36,37}$ and can be readily synthesized from the monoxidised ligand $\mathrm{Ph}_{2} \mathrm{PNHP}(\mathrm{E}) \mathrm{Ph}_{2}$ and $\left[\mathrm{M} \mathrm{Cl}_{2}(\mathrm{Cod})\right.$] ($M=P t$ or $P d$) in the presence or absence of base. We were interested to see whether compounds II and III would be suitable precursors and undergo $\mathrm{P}-\mathrm{P}$ cleavage to yield analogous complexes. Treatment of $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{4}\right](\mathrm{M}=\mathrm{Pt}$ or Pd) with II (or III) in toluene for several days at ambient temperature gave no reaction (II and III recovered unchanged) which may in part reflect either the low solubility of II (or III) in toluene or the poor donor ability of these ligands. Related metal complexes containing the neutral chelating ligand $\left[{ }_{2} P(E)\right]_{2} \mathrm{NH}(R=$ alkyl or aryl, $\mathrm{E}=\mathrm{S}$ or Se) are, to the best of our knowledge, restricted only to the cationic palladium(II) compound $\left[\operatorname{Pd}\left\{\left(\mathrm{Pr}_{2}^{\mathrm{i}} \mathrm{PS}\right)_{2}-\right.\right.$ $\left.\mathrm{NH}\}\left\{\left(\mathrm{Pr}_{2}{ }_{2} \mathrm{PS}\right)_{2} \mathrm{~N}\right\}\right] \mathrm{Cl}$ in which one of the ligands is protonated. ${ }^{42}$

C onclusion

The results of our study clearly illustrate that compound I has the propensity to form several late transition-metal complexes in which the ligand adopts either a P, P^{\prime}-chelating or P, P^{\prime} bridging mode. We also observe that the $\mathrm{P}-\mathrm{P}$ bond in I is readily cleaved by $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{4}\right]$, but under similar conditions no reaction was observed with II (or III).

A cknowledgements

We are grateful to the EPSRC for funding and to Johnson M atthey plc for loans of precious metals.

R eferences

1 D. I. A rnold, F. A. Cotton and F. E. K ühn, Inorg. Chem., 1996, 35, 4733, 5764.
2 F. A. Cotton and F. E. K ühn, Inorg. Chim. A cta, 1996, 252, 257.
3 R. G raziani and U. C asellato, A cta C rystallogr., Sect. C, 1996, 52, 850.

4 M. Paul and H. Schmidbaur, C hem. Ber., 1996, 129, 77.
5 D. Pohl, J. Ellermann, M. M oll, F. A. K noch and W. Bauer, Z. A norg. Allg. C hem., 1996, 622, 283.

6 P. Bhattacharyya and J. D. Woollins, Polyhedron, 1995, 14, 3367 and refs. therein.
7 D. Pohl, J. Ellermann, F. A. K noch and M. M oll, J. Organomet. Chem., 1995, 495, C6.
8 C. S. Browning and D. H. Farrar, J. C hem. Soc., D alton Trans., 1995, 521.

9 D. Pohl, J. Ellermann, F. A. K noch, M . M oll and W. Bauer, C hem. Ber., 1994, 127, 2167.
10 D. Pohl, J. Ellermann, F. A. K noch, M. M oll and W. Bauer, J. Organomet. Chem., 1994, 481, 259.

11 G. Liehr, G. Szucsányi and J. Ellermann, J. Organomet. Chem., 1984, 265, 95.
12 H. Schmidbaur, S. Lauteschläger and B. M ilewski-M ahrla, J. Organomet. Chem., 1983, 254, 59.

13 F. T. Wang, J. N ajdzionek, K. L. Leneker, H. Wasserman and D. M . Braitsch, Synth. R eact. Inorg. M etal-O rg. C hem., 1978, 8, 119.
14 M. G ómez, G. M uller, J. Sales and X. Solans, J. Chem. Soc., D alton Trans., 1993, 221.
15 J. Ellermann and M. Lietz, Z. N aturforsch., Teil B, 1980, 35, 64.
16 J. Ellermann, J. Sutter, C. Schelle, F. A. K noch and M. M oll, Z. A norg. Allg. C hem., 1993, 619, 2006.

17 J. Ellermann, J. Sutter, F. A. K noch and M. M oll, A ngew. Chem., Int. Ed. Engl., 1993, 32, 700.
18 M. D otzler, A. Schmidt, J. Ellermann, F. A. K noch, M. M oll and W. Bauer, Polyhedron, 1996, 15, 4425.

19 P. Braunstein, R. Hasselbring, A. Tiripicchio and F. U gozzoli, J. C hem. Soc., C hem. Commun., 1995, 37.

20 J. Ellermann, P. G abold, F. A. K noch, M. M oll, A. Schmidt and M . Schütz, Z . N aturforsch., Teil B, 1996, 51, 201.
21 A. M. Z. Slawin, M . B. Smith and J. D. Woollins, C hem. Commun., 1996, 2095.
22 K. V. K atti, H. W. Roesky and M. R ietzel, Inorg. C hem., 1987, 26, 4032.

23 H. W. Roesky, K. V. K atti, U. Seseke, M. Witt, E. E gert, R. H erbst and G. M . Sheldrick, A ngew. C hem., Int. E d. E ngl., 1986, 25, 477.
24 H. W. Roesky, K. V. K atti, U. Seseke, H.-G. Schmidt, E. E gert, R. H erbst and G. M. Sheldrick, J. Chem. Soc., D alton Trans., 1987, 847.

25 J. X. M cD ermott, J. F. White and G. M. Whitesides, J. A m. Chem. Soc., 1976, 98, 6521.
26 D. D rew and J. R. D oyle, Inorg. Synth., 1972, 13, 47.
27 E. Costa, P. G. Pringle and M. R avetz, Inorg. Synth., 1997, 31, 284.
28 H. C. Clark and L. E. M anzer, J. Organomet. Chem., 1973, 59, 411.
29 G. B. K auffman and D. O. Cowan, Inorg. Synth., 1960, 6, 211.
30 A. C. H ope and E. C. Friedrich, J. A m. Chem. Soc., 1968, 90, 909.
31 R. U son, A . L aguna and J. Vicente, J. Organomet. Chem., 1977, 131, 471.

32 R. U go, F. Cariati and G. La M onica, Inorg. Synth., 1968, 11, 105; D. R. Coulson, I norg. Synth., 1972, 13, 121.

33 DIFA BS, N. G. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
34 DIRDIF 92, PATTY, P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. G arcia-G randa, R. O. G ould, J. M . M . Smits and C. Smykalla, The DIRDIF program system, Technical Report of the Crystallography L aboratory, U niversity of N ijmegen, 1992.
35 TEX SA N, Crystal Structure A nalysis Package, M olecular Structure Corporation, Woodlands, TX, 1985, 1992.
36 P. Bhattacharyya, A. M . Z. Slawin, M . B. Smith and J. D. Woollins, I norg. Chem., 1996, 35, 3675.
37 P. Bhattacharyya, A. M . Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem. Soc., D alton T rans., 1995, 3189.

38 P. Bhattacharyya, J. N ovosad, J. Phillips, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem. Soc., D alton Trans., 1995, 1607.

39 I. Haiduc, in Inorganic Experiments, ed. J. D. Woollins, VCH, Weinheim, 1994.
40 J. D ehand, M. Pfeffer and M. Zinsius, Inorg. Chim. A cta, 1975, 13, 229.

41 B. R. James and M. B. Smith, unpublished work; P. A. C haloner and G. T. L. Broadwood-Strong, J. Chem. Soc., D alton Trans., 1996, 1039.

42 D. Cupertino, R. K eyte, A. M. Z. Slawin, J. D. Woollins and D. J. Williams, Polyhedron, 1996, 15, 4441.

R eceived 11th A pril 1997; Paper 7/02500I

[^0]: \ddagger Authentic samples of cis-[$\left[\mathrm{PdX}_{2}\left(\mathrm{Ph}_{2} \mathrm{PNHPPh}_{2}{ }^{-P}, \mathrm{P}^{\prime}\right)\right]$ were prepared from $\left[\mathrm{PdX}_{2}(\operatorname{cod})\right]$ ($\mathrm{X}=\mathrm{Cl}$ or Br) and 1 equivalent of $\mathrm{Ph}_{2} \mathrm{PNHPPh}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

